The genomic basis of cichlid fish adaptation within the deepwater “twilight zone” of Lake Malawi

Publication Type:Journal Article
Year of Publication:2017
Authors:Hahn, C, Genner, MJ, Turner, GF, Joyce, DA
Journal:Evolution Letters
Pagination:1-15
Date Published:08/2017
Type of Article:epub 29-Aug-2017 ahead of print; open access
Keywords:Cichlid, hemoglobin, Root effect, sensory drive, supergene
Abstract:

Deepwater environments are characterized by low levels of available light at narrow spectra, great hydrostatic pressure, and low levels of dissolved oxygen—conditions predicted to exert highly specific selection pressures. In Lake Malawi over 800 cichlid species have evolved, and this adaptive radiation extends into the “twilight zone” below 50 m. We use population-level RAD-seq data to investigate whether four endemic deepwater species (Diplotaxodon spp.) have experienced divergent selection within this environment. We identify candidate genes including regulators of photoreceptor function, photopigments, lens morphology, and haemoglobin, many not previously implicated in cichlid adaptive radiations. Colocalization of functionally linked genes suggests coadapted “supergene” complexes. Comparisons of Diplotaxodon to the broader Lake Malawi radiation using genome resequencing data revealed functional substitutions and signatures of positive selection in candidate genes. Our data provide unique insights into genomic adaptation within deepwater habitats, and suggest genome-level specialization for life at depth as an important process in cichlid radiation.

URL:http://onlinelibrary.wiley.com/doi/10.1002/evl3.20/abstract
DOI:10.1002/evl3.20
Basin / bassin: 

Who's online

There are currently 0 users online.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith